
IEROM	–	Operational	Manual	

IEROM	Startup	
We	assume	that	there	are	four	computing	systems	in	this	setting.		

1. Main	Control	and	Database	Server	–	cerebellum	–	Local	IP	address:	110	

2. Image	Server	–	imageServer	–	Local	IP	address:	120	

3. Image	Processing	Server	–	brainslave	–	Local	IP	address:	130	

4. Microscope	Control	PC	–	blackscope	

Power	On	for	Stage	and	Camera	
In	the	power	strip,	all	components	of	the	system	are	clearly	label.	Fine	STGE	(stage)	and	CAM	(camera).	

Then	turn	them	ON.	

Software	Startup	
• At	cerebellum	

o Login	as	bi2s	

o Start	a	Terminal	

o Start	a	conda	environment,	named	as	scope	for	the	system	

§ $	source	activate	scope	

o Start	the	admin	program	

§ $	runscope	-s	admin	

o Open	another	Terminal	

o Start	the	control	program	with	the	name	black.	

§ $	source	activate	scope	

§ $	runscope	-s	black	

• At	imageServer	(IOThread	will	be	running)	

o Login	as	bi2s	

o Start	a	Terminal	

o Start	a	conda	environment	and	run	the	control	program.	

§ $	source	activate	scope	

§ $	runscope	

• At	brainslave	(ImageAnalyzer,	ImageComposer,	ImageTiler	will	be	running)	

o Same	as	imageServer.	

• At	blackscope	

o Start	Windows	PowerShell	

o Go	to	C:\Users\BlackScope\	

o Use	commands	as	follows.	

§ activate	scope	

§ runscope	

User	Interface	Startup	
• Open	Chrome	Browser.	

• Use	the	URL	below	for	admin.	

o http://admin.bi2s.ddns.net	

• Use	the	URL	below	for	the	black	microscope	control	

o http://black.bi2s.ddns.net	

	

	

	

	 	

Initial	Settings	for	Image	Sectioning	

Homing	

	

The	axes	of	the	system	are	as	follows.	

	

• Caution
o Water pump must be off before homing!!
o No knife attached!!

• Sign-in from .110 with localhost:3000

• Place the stage x, y, and z in somewhere in the middle.

• Homing order:

o Enabling

§ Down z all the way.

• Enable z → will be Fault.

o Then click ‘Clear’ button.

o Then z will be the lowest possible.

• Enable x and y

o Homing

§ Home y first.

§ Then x.

• Caution: Make sure that the knife will not hit the tissue block.

Tissue	Block	Size	Measurement	
	

	

	

How	to	Attach	an	Objective	
To	attach	the	objective,	the	circular	shape	in	the	optics	train	must	be	taken	off.	

	

	

How	to	Disassemble	Water	Bath	

	

	

How	to	Assemble	the	Diamond	Knife	

	

	

	

How	to	Attach	the	Optic	Fiber	and	Seal	It	

	

Trouble	Shootings	
When	the	stage	goes	mad,	the	enable/disable	flag	in	the	GUI	is	not	responding.	The	flag	must	be	

manually	changed	in	the	database.	

Robomongo:		
Manually	change	stage	data.	

kesm-metor

• system
• Meteor - collections - properties-black

• Right click and select ‘View Results in Table Mode.’
• Find ‘Property’ column.

• Right click and select ‘ Edit Document’

• “requestedValue” ← change this same as “value”

	

Water	Pump	
The	water	bath	must	be	lifted	a	little	bit	from	the	bottom.	In	order	for	the	stage	to	hold	up	the	water	

bath,	the	compressed	air	must	be	provided.	See	the	Air	Compressor	section.	

	

How	to	Adjust	Water	Level	
• Pour	water	into	the	water	bath	to	the	marked	level.		

• Lift	the	water	bath	to	emerge	the	tip	of	the	knife	where	the	inlet	is	located.	

• Turn	on	the	water	pump	to	circulate	the	water	through	the	system.		

• As	the	water	level	goes	down,	pour	water	a	little	by	little.	

o Caution!	Do	not	rush.	Be	careful	not	to	overflow	the	water.	

• Open	the	knob	of	the	squeezer	that	is	located	in	the	top	left	corner	of	the	drawing.	Then	repeat	

pressing	and	releasing	to	suck	water	to	the	bottle.	There	is	a	marked	level	on	the	bottle.	You	can	

safely	get	the	water	up	to	the	level.		

	

Air	Compressor	
If	the	compressor	does	not	give	an	enough	PSI,	then	the	water	inside	must	be	drained.	

	

	 	

	

From	this	section,	an	operator	does	not	need	to	do	or	use	them	for	daily	operations	of	the	IEROM.	

Network	Settings	
Networks	must	be	properly	set	before	any	of	the	IEROM’s	software.	

Subdomain	name	resolution	

.3scan-kesm-config.json	file	settings	
Remove	the	“baseURI”	section	in	the	meteor.	There	are	“admin”	and	“black”	section	in	the	“meteor”	

section.	Make	sure	that	the	“baseURI”	section	is	removed	from	each	of	them.	

Network	configuration	

	

Use	Nginx	
Reverse	proxy.	Use	proxy_pass	in	nginx.conf	file.	(/etc/ngnix/conf.d/ngnix.conf)	

Create	a	file	named	“ierom.conf”	

systemManager Meteor Server
server {
 listen 8004;
 server_name admin.bi2s.ddns.net;
	

 location / {
 proxy_pass http://192.168.1.110:3000;
 }
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
	

}
	

kesmControl-black Meteor Server
server {
 listen 8004;
 server_name black.bi2s.ddns.net;
	

 location / {
 proxy_pass http://192.168.1.110:3100;
 }
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
	

}
	

must be completed with data and file servers. Here!!! 5/4/2017

Start/Stop	nginx	
http://nginx.org/en/docs/beginners_guide.html

nginx -s signal

Where	signal	may	be	one	of	the	following:	

• stop	—	fast	shutdown	

• quit	—	graceful	shutdown	

• reload	—	reloading	the	configuration	file	

• reopen	—	reopening	the	log	files	

Fix	the	error,	“Uncaught	Error:	Handler	with	name	'route'	already	exists.”	
This is from iron:middleware-stack in meteor module.

Workaround	without	updating	iron:middleware-stack	
http://stackoverflow.com/questions/36031706/middleware-stack-js31-uncaught-error-handler-
with-name-route-already-exists

dit: this issue was fixed in iron:middleware-stack 1.1.0 .

I have the same problem. Weirdly, I have this problem on Chrome 51 but not on
Chrome 46. I guess this has to do with updates in the javascript engine, and I'll post
here if I figure out what exactly.

In the meantime, the workaround I used was to explicitly add names to the routes. It
doesn't matter what they are, they just have to be declared, otherwise iron-router
think the name of the route is "route." So your code would become:

Router.route('/admin/dashboard', { name: "Boaty_McBoatface",
template:"adminDashboard" }); Router.route('/admin/create/table', { name:
"Guacamole", template:"create_table" });

My	fix!	

Based	on	the	idea	quoted	above,	I	changed	router.js	files.	

router.js	files	are	located	in	each	meteor	web	directory.	In	our	case,	there	are	at	followings.	

~/anaconda3/pkgs/3scan-scope-0.5.0-nppy_35/site-packages/KESMAcq-0.5.0-py2.7.egg/KESMAcq/web	

kesmControl/client/router.js	

systemManager/client/router.js	

Due	to	the	error	in	iron::middleware-stack,	the	definitions	of	Router.route	must	have	an	explicit	name.	

Thus,	I	added	‘name:	<any_name>.’	Without	the	name	property,	all	names	are	set	as	‘route’	as	default.	

This	makes	any	additional	Router.route	generate	an	error,	“Uncaught	Error:	Handler	with	name	'route'	

already	exists.”

kesmControl/client/router.js

var titlePrefix = 'KESM@KU-' + kesmName + ' ';
	

Router.route('/', {
 name: 'root',
 template: 'kesmControls',
 waitOn: function() {
 return [
 Meteor.subscribe('current-properties'), // this includes the navbar-
properties
 Meteor.subscribe('new-images-from-kesm', kesmName, 50)
];
 },
 onAfterAction: setPageTitle(titlePrefix + 'Control')
});
	

Router.route('/focus', {
 name: 'focus',
 template: 'focusViewer',
 waitOn: function() {
 return [
 Meteor.subscribe('kesm-control-navbar-properties'),
 Meteor.subscribe('focus-image', kesmName)
];
 },
 onAfterAction: setPageTitle(titlePrefix + 'Focus Viewer')
});
	

Router.route('/debug', {
 name: 'debug',
 template: 'debugPane',
 waitOn: function() {
 return [
 Meteor.subscribe('kesm-control-navbar-properties'),
 Meteor.subscribe('current-properties')
];
 },
 onAfterAction: setPageTitle(titlePrefix + 'properties')
});
	

Router.route('/stage', {
 name: 'stage',
 template: 'stageData',

 waitOn: function() {
 return [
 Meteor.subscribe('kesm-control-navbar-properties'),
 Meteor.subscribe('stage-data-for-this-kesm', kesmName)
];
 },
 onAfterAction: setPageTitle(titlePrefix + 'Stage Data Viewer')
});
	

systemManager/client/router.js

/* globals Router, setPageTitle */
	

Router.route('/', {
 name: 'root',
 template: 'dashboard',
 waitOn: function() {
 return [
 Meteor.subscribe('multi-kesm-properties'),
 Meteor.subscribe('shared-properties')
];
 },
 onBeforeAction: function() {
 Session.set('numLogs', 6);
 Session.set('logSeverity', 'INFO');
 Session.set('moduleSearch', '');
 this.next();
 },
 onAfterAction: setPageTitle('KESM Dashboard - Kettering')
});
	

Router.route('/processes', {
 name: 'processes',
 template: 'processes',
 waitOn: function() {
 return [
 Meteor.subscribe('allowed-processes')
];
 },
 onAfterAction: setPageTitle('KESM Processes')
});
	

Router.route('/logs', {
 name: 'logs',
 template: 'logViewer',
 waitOn: function() {
 return [
 Meteor.subscribe('all-log-device-names'),
 Meteor.subscribe('shared-properties')
];
 },
 onBeforeAction: function() {
 // In case we're coming from the dashboard, make sure this is populated
correctly.
 if (Session.get('numLogs') < 100) {
 Session.set('numLogs', 100);
 }
 this.next();
 },
 onAfterAction: setPageTitle('KESM Log Viewer')
});
	

Router.route('/slices/sample/:sampleId/z/:z', {
 name: 'slice-viewer.image',
 template: 'sliceViewer',
 waitOn: function() {
 var options = {
 sampleId: this.params.sampleId,
 // We've gotta parse a float here because route params are
 // always strings.
 z: parseFloat(this.params.z)
 };
 return [
 Meteor.subscribe('tiled-images-in-face', options),
 Meteor.subscribe('image-in-next-face', options),
 Meteor.subscribe('image-in-previous-face', options),
 Meteor.subscribe('image-at-lowest-z', options),
 Meteor.subscribe('image-at-highest-z', options)
];
 },
 data: function() {
 var routeQuery = this.params.query;
 var lat = parseFloat(routeQuery.lat);
 if (_.isNaN(lat)) {
 lat = 0;
 }
 var lng = parseFloat(routeQuery.lng);
 if (_.isNaN(lng)) {
 lng = 0;
 }

 var zoom = parseInt(routeQuery.zoom, 10);
 if (_.isNaN(zoom)) {
 zoom = 0;
 }
	

 var sampleId = this.params.sampleId;
 var z = parseFloat(this.params.z);
	

 return {
 sampleId: sampleId,
 z: z,
 lat: lat,
 lng: lng,
 zoom: zoom
 };
 },
 onAfterAction: setPageTitle('KESM Slice Viewer')
});
	

Router.route('/slices/sample/:sampleId', {
 name: 'slice-viewer.sample',
 action: function() {
 var sampleId = this.params.sampleId;
 this.redirect('slice-viewer.highest', { sampleId: sampleId });
 }
});
	

Router.route('/slices/sample/:sampleId/no-images', {
 name: 'slice-viewer.no-images',
 template: 'sliceViewer',
 waitOn: function() {
 var sampleId = this.params.sampleId;
 return [
 Meteor.subscribe('latest-tiled-images-for-sample', sampleId, 1)
];
 },
 data: function() {
 return {
 sampleId: this.params.sampleId,
 imagesInFace: Images.find().count()
 };
 }
});
	

Router.route('/slices', {
 name: 'slices',
 waitOn: function() {
 return [
 Meteor.subscribe('latest-tiled-image')
];
 },
 action: function() {
 var lastImage = Images.findOne();
 this.redirect('slice-viewer.sample', { sampleId:
lastImage.properties.currentSampleID });
 }
});
	

Websock	Error		

WebSocket	connection	failed:	Error	during	WebSocket	handshake:	Unexpected	

response	code:	400	
https://chrislea.com/2013/02/23/proxying-websockets-with-nginx/

In	nginx	settings,	I	added	three	lines	in	location	/	{}	section.		

server {
 ….
 location / {
 proxy_pass http://localhost:8080;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 proxy_set_header Host $host;
 }
}

	

proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "upgrade";
“The first line tells Nginx to use HTTP/1.1 when communicating to the Node backend, which is
required for WebSockets. The next two tell Nginx to respond to the Upgrade request which is
initiated over HTTP by the browser when it wants to use a WebSocket.

In production, you’d likely want to add additional location stanzas to Nginx to tell it where to
serve static assets from, set expires headers, and so on. You’d also likely want to manage the
Node process(es) with an init script or supervisor, so that the app would start automatically

when the server booted up. But, in an nutshell, this is pretty much it for using Nginx with your
WebSocket enabled application! Questions and comments are always welcome of course.”
[from the link]

	

DevTools	failed	to	parse	SourceMap:	

http://black.bi2s.ddns.net/bootstrap.css.map	
In DevTools, press F1. Turned off two options. “Enable Javascript source maps” and “Enable
CSS source maps.”

http://stackoverflow.com/questions/36051891/esri-failed-to-parse-source-map

	

	

	

	

